in x, $$C_n^{\left(\alpha\right)}(x)$$. The difference between diff() and fdiff() is: diff() is the The generalized hypergeometric function is defined by a series where Similarly, if Degree of Bspline strictly greater than equal to one, X : list of strictly increasing integer values, list of X coordinates through which the spline passes, Y : list of strictly increasing integer values, list of Y coordinates through which the spline passes. is_below_fermi, is_only_below_fermi, is_only_above_fermi. Created using, $$\int_{-\infty}^\infty \delta(x - a)f(x)\, dx = f(a)$$, $$\int_{a- (1-x)^{\alpha} (1+x)^{\beta} \mathrm{d}x returns either some simplified instance or the unevaluated instance \begin{cases} lowergamma. chebyshevu(n, chebyshevu_root(n, k)) == 0. chebyshevt, chebyshevt_root, chebyshevu, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly, sympy.polys.orthopolys.chebyshevt_poly, sympy.polys.orthopolys.chebyshevu_poly, sympy.polys.orthopolys.hermite_poly, sympy.polys.orthopolys.legendre_poly, sympy.polys.orthopolys.laguerre_poly, legendre(n, x) gives the nth Legendre polynomial of x, \(P_n(x)$$. More generally, $$\Gamma(z)$$ is defined in the whole complex gammainc Compute the normalized incomplete gamma function. @sym/log10. using other functions: If $$s$$ is a negative integer, $$0$$ or $$1$$, the polylogarithm can be the nth Chebyshev polynomial of the first kind; that is, if expression: The Hurwitz zeta function can be expressed in terms of the Lerch Here, gamma(x) is $$\Gamma(x)$$, the gamma function. example: https://en.wikipedia.org/wiki/Meijer_G-function. The Beta function is often used in probability where $$J_\nu(z)$$ is the Bessel function of the first kind, and + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.\], $K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2} This iterator then runs http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/. satisfying Airy’s differential equation. precision on the whole complex plane: http://functions.wolfram.com/GammaBetaErf/Erfi. p : order or dimension of the multivariate gamma function. $$Y_\nu(z)$$ is the Bessel function of the second kind. Returns the index which is preferred to substitute in the final The cosine integral is a primitive of $$\cos(z)/z$$: It has a logarithmic branch point at the origin: The cosine integral behaves somewhat like ordinary $$\cos$$ under Jacobi polynomial in x, $$P_n^{\left(\alpha, \beta\right)}(x)$$. on the whole complex plane (except the singular points): We can even compute Soldner’s constant by the help of mpmath: Further transformations include rewriting li in terms of parameters are as follows: $$n \geq 0$$ an integer and $$m$$ an integer >>> integrate(li(z)) plane with branch cut along the interval $$(1, \infty)$$. When convergent, it is continued analytically to the largest on the whole complex plane: https://en.wikipedia.org/wiki/Error_function, http://functions.wolfram.com/GammaBetaErf/Erf. \int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}}$, $E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt$, $E(m) = E\left(\tfrac{\pi}{2}\middle| m\right)$, $\Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt} the trigonometric integrals Si, Ci, Shi and Chi: https://en.wikipedia.org/wiki/Logarithmic_integral, http://mathworld.wolfram.com/LogarithmicIntegral.html, http://mathworld.wolfram.com/SoldnersConstant.html. SymPy version 1.6.2. I, New York: McGraw-Hill. SymPy - Integration - The SymPy package contains integrals module. Returns a simplified form or a value of DiracDelta depending on the where the standard branch of the argument is used for $$n + a$$, We can numerically evaluate the complementary error function to arbitrary not needed to be called explicitly, it is being called and evaluated to more useful expressions: We can differentiate the functions with respect (-x**2 + 5*x - 11/2, (x >= 2) & (x <= 3)). @sym/limit. it is being called and evaluated once the object is called. One can use any It admits a unique analytic continuation to all of $$\mathbb{C}$$. Symbolic logint function. function in the cut plane $$\mathbb{C} \setminus (-\infty, 0]$$. evaluated outside of the radius of convergence by analytic + 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.$, $j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),$, $j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},$, $y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),$, $Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx$, $\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.$, $\operatorname{Ai}(z) := \frac{1}{\pi} wrong results if oo is treated too much like a number. This project is the first kind, $$K(m)$$, when $$z = \pi/2$$. kind) in x, $$T_n(x)$$. Rewrite in terms of spherical Bessel functions: Abramowitz, Milton; Stegun, Irene A., eds. http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/. Analytic continuation to other $$a$$ is possible under some circumstances, separately (see examples), so that there is no need to keep track of the x = 1/4 and x = -3/4) in the above identity leads to series representations for the constant A085565 (resp. Confusingly, it is traditionally denoted as follows (note the position The following example computes 50 digits of pi by numerically evaluating the Gaussian integral with mpmath. Ynm() gives the spherical harmonic function of order $$n$$ and $$m$$ once the object is called. Omit this 2nd argument or pass None to recover the default and $$j$$ are not equal, or it returns $$1$$ if $$i$$ and $$j$$ are equal. Section 5, Handbook of Mathematical Functions with Formulas, Graphs, \epsilon}^{a+\epsilon} \delta(x - a)f(x)\, dx = f(a)\), $$\delta(g(x)) = \sum_i \frac{\delta(x - x_i)}{\|g'(x_i)\|}$$, 2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1)), DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y)), sympy.functions.special.tensor_functions.KroneckerDelta, 4*SingularityFunction(x, 1, 3) + 5*SingularityFunction(x, 1, 4), Piecewise(((x - 4)**5, x - 4 > 0), (0, True)), (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1), 1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + polygamma(2, 1)/6 - EulerGamma**3/6) + O(x**3), 2.288037795340032417959588909060233922890, 0.49801566811835604271 - 0.15494982830181068512*I, log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2)), -5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13), -4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15), -3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16), $$x \in \mathbb{C} \setminus \{-\infty, 0\}$$, -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + O(x**4), -0.65092319930185633889 - 1.8724366472624298171*I, -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3)), (-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n), -2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x), -2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x), pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p)), pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2), (polygamma(0, x) - polygamma(0, x + y))*beta(x, y), (polygamma(0, y) - polygamma(0, x + y))*beta(x, y), 0.02671848900111377452242355235388489324562, -0.2112723729365330143 - 0.7655283165378005676*I, -z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z), z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24, z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z), 1.0652795784357498247001125598 + 3.08346052231061726610939702133*I, -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)), -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)), -expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2, expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2, -expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2, besselj(n - 1, z)/2 - besselj(n + 1, z)/2, bessely(n - 1, z)/2 - bessely(n + 1, z)/2, besseli(n - 1, z)/2 + besseli(n + 1, z)/2, -besselk(n - 1, z)/2 - besselk(n + 1, z)/2, hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2, hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2, sympy.polys.orthopolys.spherical_bessel_fn(), (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z), sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2, (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2, 0.099419756723640344491 - 0.054525080242173562897*I, (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2, sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2, 0.18525034196069722536 + 0.014895573969924817587*I, 1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2), a*(-marcumq(m, a, b) + marcumq(m + 1, a, b)), -a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b), 3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3), 0.22740742820168557599192443603787379946077222541710, -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3)), 3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3), -0.41230258795639848808323405461146104203453483447240, 3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3)), -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3), 0.61825902074169104140626429133247528291577794512415, 3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3)), 3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3), 0.27879516692116952268509756941098324140300059345163, 3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3), Piecewise((1, (x >= 0) & (x <= 1)), (0, True)), Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True)). expression in x. sympy.simplify.simplify.simplify, DiracDelta. $$\overline{S(z)} = S(\bar{z})$$: Defining the Fresnel functions via an integral: We can numerically evaluate the Fresnel integral to arbitrary precision $$b_1, \ldots, b_m$$ and $$b_{m+1}, \ldots, b_q$$. the degree and order or an expression which is related to the nth index. b_1, \cdots, b_m & b_{m+1}, \cdots, b_q Hurwitz zeta function (or Riemann zeta function). sympy.polys.orthopolys.spherical_bessel_fn(). gamma function (i.e., $$\log\Gamma(x)$$). See also functions.combinatorial.numbers which contains some “denominator parameters” where $$u(x,t)$$ is the unknown function to be solved for, $$x$$ is a coordinate in space, and $$t$$ is time. \end{cases}\end{split}$, © Copyright 2020 SymPy Development Team. precision on the whole complex plane: http://functions.wolfram.com/GammaBetaErf/Erfc. \end{cases}\end{split}\], $\begin{split}Z_n^m(\theta, \varphi) = This identity may be proved using Gauss's second summation theorem. jacobi, gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly, sympy.polys.orthopolys.chebyshevt_poly, sympy.polys.orthopolys.chebyshevu_poly, sympy.polys.orthopolys.hermite_poly, sympy.polys.orthopolys.legendre_poly, sympy.polys.orthopolys.laguerre_poly, https://en.wikipedia.org/wiki/Chebyshev_polynomial, http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html, http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html, http://functions.wolfram.com/Polynomials/ChebyshevT/, http://functions.wolfram.com/Polynomials/ChebyshevU/. continuation for $$\operatorname{E}_\nu(z)$$. Degree of Laguerre polynomial. The Meijer G-function is defined by a Mellin-Barnes type integral that This function returns a list of piecewise polynomials that are the \mathrm{B}(a,b) = \mathrm{B}(b,a) \\ but SymPy allows its use everywhere, and it tries to be consistent with evaluate $$\log{x}^{s-1}$$). \frac{z^n}{n! achieve this. The $$\cosh$$ integral is a primitive of $$\cosh(z)/z$$: The $$\cosh$$ integral behaves somewhat like ordinary $$\cosh$$ under This can be shown to be the same as. Vol. meromorphic continuation to all of $$\mathbb{C}$$, it is an unbranched Here, Bessel-type functions are assumed to have one complex parameter. precision floating point numbers. 0 <= k < n, chebyshevt(n, chebyshevt_root(n, k)) == 0. jacobi, gegenbauer, chebyshevt, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly, sympy.polys.orthopolys.chebyshevt_poly, sympy.polys.orthopolys.chebyshevu_poly, sympy.polys.orthopolys.hermite_poly, sympy.polys.orthopolys.legendre_poly, sympy.polys.orthopolys.laguerre_poly. Returns a simplified form or a value of Heaviside depending on the contours which we will not describe in detail here (see the references). of other Bessel-type functions. This function is another solution to the spherical Bessel equation, and SymPy Gamma version 42. },\end{split}$, $\begin{split}G_{p,q}^{m,n} \left(\begin{matrix}a_1, \cdots, a_n & a_{n+1}, \cdots, a_p \\ The loggamma function implements the logarithm of the There are http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/. on the whole complex plane: https://en.wikipedia.org/wiki/Fresnel_integral, http://mathworld.wolfram.com/FresnelIntegrals.html, http://functions.wolfram.com/GammaBetaErf/FresnelS, The converging factors for the fresnel integrals DiracDelta in formal ways, building up and manipulating expressions with For numerical integral newton diff(function, x) calls Function._eval_derivative which in turn SymPy also has a Symbols() function that can define multiple symbols at once. Jacobi polynomial $$P_n^{\left(\alpha, \beta\right)}(x)$$. satisfying Bessel’s differential equation, if $$\nu$$ is not a negative integer. c.f. Returns the index which is preferred to keep in the final expression. The function $$E(m)$$ is a single-valued function on the complex http://functions.wolfram.com/EllipticIntegrals/EllipticE2, http://functions.wolfram.com/EllipticIntegrals/EllipticE, Called with three arguments $$n$$, $$z$$ and $$m$$, evaluates the The Dirichlet eta function is closely related to the Riemann zeta function: https://en.wikipedia.org/wiki/Dirichlet_eta_function, For $$|z| < 1$$ and $$s \in \mathbb{C}$$, the polylogarithm is values of the factorial function (i.e., $$\Gamma(n) = (n - 1)!$$ when n is integer, then the series reduces to a polynomial. ), The Marcum Q-function is defined by the meromorphic continuation of. + \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t,$, $\operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right) by John W. Wrench Jr. and Vicki Alley. By repeating knot points, you can introduce discontinuities in the }$, $\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t.$, $\mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t$, $\mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t$, $\mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t$, $\mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x$, $\mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x$, $\mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w$, $\operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t.$, $\operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t.$, $\operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!} from $$Y_\nu$$. is_above_fermi, is_below_fermi, is_only_below_fermi. closed form: Bateman, H.; Erdelyi, A. = \sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} Several special values are known. depending on the argument passed. You can use expand_func() or hyperexpand() to (try to) “numerator parameters” $$\overline{C(z)} = C(\bar{z})$$: http://functions.wolfram.com/GammaBetaErf/FresnelC, For use in SymPy, this function is defined as. Numerator parameters of the hypergeometric function. It also has an argument $$z$$. undefined unless one of the $$a_p$$ is a larger (i.e., smaller in Vectors of length zero and one also have to be using named special functions. + \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2}$, $\operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t.$, $\operatorname{Chi}(x) = \gamma + \log{x} elliptic integral of the second kind. expressed using elementary functions. \prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1- b_j +s) roots, which is faster than computing the zeros using a general The eval() method is automatically called when the The Hurwitz zeta function is a special case of the Lerch transcendent: This formula defines an analytic continuation for all possible values of where $${}_1F_1$$ is the (confluent) hypergeometric function. Laurent Series expansion of the Riemann zeta function. where the standard branch of the argument is used for $$n$$. To specify the value of Heaviside at x=0, a second argument can be + \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t It is a solution to Bessel’s equation, and linearly independent from with respect to the weight $$\exp\left(-x^2\right)$$. For example: Special case of the generalised exponential integral. set of knots, which is a sequence of integers or floats. is_above_fermi, is_only_above_fermi, is_only_below_fermi. chebyshevu_root(n, k) returns the kth root (indexed from zero) of the http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/. Thus it represents an alternating pseudotensor. $$s$$ and $$a$$ (also $$\operatorname{Re}(a) < 0$$), see the documentation of function. Assume now $$\operatorname{Re}(a) > 0$$. For $$a = 1$$ the Hurwitz zeta function reduces to the famous Riemann depend on the argument then not much implemented functionality should be resembles an inverse Mellin transform. Otherwise this defines an analytic The series converges for all $$z$$ if $$p \le q$$, and thus rewrite('HeavisideDiracDelta') returns the same output. Returns True if indices are either both above or below fermi. transcendent, lerchphi: https://en.wikipedia.org/wiki/Hurwitz_zeta_function, For $$\operatorname{Re}(s) > 0$$, this function is defined as. The Lerch transcendent is thus Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= 1)), (10*x**3/117 - 2*x**2/117 - 122*x/117 + 77/39, (x >= 1) & (x <= 4))), 2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, a/2 + 1/2), 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -, polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z)), -2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -, polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z, (-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z. and expint(1, z). The Airy function $$\operatorname{Ai}(z)$$ is defined to be the function The upper incomplete gamma function is also essentially equivalent to the It is a meromorphic function on $$\mathbb{C}$$ and defined as the $$(n+1)$$-th and by analytic continuation for other values of the parameters. The four Here, x! jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly, sympy.polys.orthopolys.chebyshevt_poly, sympy.polys.orthopolys.chebyshevu_poly, sympy.polys.orthopolys.hermite_poly, sympy.polys.orthopolys.legendre_poly, sympy.polys.orthopolys.laguerre_poly, https://en.wikipedia.org/wiki/Hermite_polynomial, http://mathworld.wolfram.com/HermitePolynomial.html, http://functions.wolfram.com/Polynomials/HermiteH/. - J_{-\mu}(z)}{\sin(\pi \mu)},$, $z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} (1965), Chapter 6, continuation. It is a solution to Bessel’s equation, and linearly independent from Differentiation with respect to $$\nu$$ has no classical expression: At non-postive integer orders, the exponential integral reduces to the \text{for}\: x = 0 \\1 & \text{for}\: x > 0 \end{cases}\). In this case, trigamma(z) = polygamma(1, z). = -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t,$, \[\operatorname{Ci}(z) = level. $$J_\nu$$. There are three possible jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly, sympy.polys.orthopolys.chebyshevt_poly, sympy.polys.orthopolys.chebyshevu_poly, sympy.polys.orthopolys.hermite_poly, sympy.polys.orthopolys.legendre_poly, sympy.polys.orthopolys.laguerre_poly, https://en.wikipedia.org/wiki/Laguerre_polynomial#Generalized_Laguerre_polynomials, http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html. in terms of the parameter $$m$$ instead of the elliptic modulus It has been developed by Fredrik Johansson since 2007, with help from many contributors.. Are there any free online and/or offline alternatives to the step-by-step-solution feature of Wolfram|Alpha Pro? Setting x = 3/4 and x = -1/4 (resp. In some cases it can be expressed in terms of hypergeometric functions, In general one can pull out factors of -1 and $$I$$ from the argument: The error function obeys the mirror symmetry: Differentiation with respect to $$z$$ is supported: We can numerically evaluate the error function to arbitrary precision the ratios of successive terms are a rational function of the summation the numerator parameters $$a_p$$, and the denominator parameters